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WWhy damage mechanics?

Damage mechanics
= convenient way to describe material degradation
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WWhy damage mechanics?

Damage mechanics
= convenient way to describe material degradation
= continuum theory
= easy to use in codes

= contains feedbacks that lead to failure processes
= can lead to oscillatory behaviour
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ematical formulation

alar damage variable w: 0 <=w<=1



Mathematical formulation

» Scalar damage variable w: D<=w<=1

= Damage evolution law (elastic):

dw

E — elast(lla ]27 w)
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Mathematical formulation

» Scalar damage variable w: D<=w<=1

= Damage evolution law (elastic):

dw

—, — Llelas I 717

It l t( 1,42 w)
= Damage evolution law (viscous):

dw

., Fvisc 9 9
It (J1 J2 w)
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Elastic damage law

Damage evolution law (Lyakhovsky et al., 1997)

dw

e Cala(§ — &o)-

[, and /5 are invariants of the strain tensor, and the
deformation state Is

= — < 0.
5 ]27 50
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Damage evolution law (Lyakhovsky et al., 1997)

dw

e Cala(§ — &o)-

[, and /5 are invariants of the strain tensor, and the
deformation state Is

= — < 0.
5 [27 50

Damage affects the elastic moduli

A=X (+...), = o + wSor
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(A) Basic decoupling
Elasic relaxation
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(A) Basic decoupling
Elasic relaxation

(D) Viscous flow
Damage healing

(B) Damage increase

(C) Faillure at margin
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(A) Basic decoupling

/ Elasic relaxation \

(D) \[glasrcn(;l;zfrl];iving (B) Damage increase

\ (C) Failure at margin /

Damage mechanics — p.7/16



(A) Elastic relaxation:
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(A) Elastic relaxation:
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Motion events: the base

(A;) Failure of plastic till at the base,
released by smaller tidal back-pressure.
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Motion events: the base

(A;) Failure of plastic till at the base,
released by smaller tidal back-pressure.

(As) Water-filled Yoffe-crack traveling along the ice-till
Interface (moving at subsonic velocity).
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(B) Damage evolution at the highly stressed margin:

5.000000e+00
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(B) Damage evolution at the highly stressed margin:
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(B) Damage evolution at the highly stressed margin:

1.500000¢+01
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\What Is the role of the margins?

(C,) Failure of the margins due to damaging.
Rapid loading of the base and plastic till failure.
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(C,) Failure of the plastic till due to diffusing water.
Rapid loading of the margins and cracking of the ice.
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(C,) Failure of the margins due to d
Rapid loading of the base and

amaging.

nlastic till fatlure.

(C,) Failure of the plastic till due to diffusing water.

Rapid loading of the margins and cracking of the ice.

(D) Viscous flow, healing and damage reduction
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Damage mechanics

Is the application of damage mechanics useful?

m Crevassing at the surface: yes
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Is the application of damage mechanics useful?

crevassing at the surface:

predicting failure processes:

fallure processes at depth: maybe.
Ice stream margins are reminiscent of active faults.
Damage mechanics has been successfully applied for
prediction of fault location,
prediction of margin migration,
prediction of fault dynamics.
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Main advantages:
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Margin migration can be calculated by the model
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Main advantages:
Margin position is calculated by the model
Margin migration can be calculated by the model
Different stress transfer from stream to margins
Heat balance at margin will be different
Includes feedback mechanisms and instabilities

Main problems:
Formulation of damage law
Constrain the parameters
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